
density and velocity of the plasma for z = i.i. The starting stages correspond to the ap- 
pearance of self-focusing and the formation of a waveguide channel under the action of the 
field. The final stages of this picture, t = 2.9 and t = 3.1, correspond to the free motion 
of the plasma and collapse of the waveguide channel. The parameters in Fig. 5 are the same 
as in Figs. 3 and 4. 

LITERATURE CITED 

I. V.N. Karpman, Nonlinear Waves in Dispersive Media [in Russian], Nauka, Moscow (1973). 
. , "F'1 2 L. Kerr 1• tracks formed in transparent optical glass by laser beam self- 

focusing~ Theoretical analysis," Phys. Rev., ~, No. 3 (1971). 
3. G. Steinberg, "Filamentary tracks formed in. transparent optical glass by laser beam 

self-focusing. Experimental investigation," Phys. Rev., ~, No. 3 (1971). 
4. Yu. P. Ra~zer,"Self-focusing and defocusing, instability, and stabilization of light 

beams in weakly absorbing media," Zh. Eksp. Teor. Fiz., 52, No. 2 (1967). 
5. A.F. Mastryukov and V. S. Synakh, "Numerical modelling of self-focusing of wave 

packets in media with striction nonlinearity," Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1977). 
6. S~ A. Akhmanov, L. P. Sukhorukov, and R. V. Khokhlov, "Self-focusing and diffraction of 

light in a nonlinear medium," Usp. Fiz. Nauk, 93, No. 1 (1967). 

SINGULAR SELF-SIMILAR SUPEP~ENSE COMPRESSION REGIMES 

FOR LASER TARGETS 

S. I. Anisimov and N. A. Inogamov UDC 532.51+533.95 

The approach to laser-driven fusion reactions proposed in [i, 2] is based on a special 
mode for depositing energy in the laser target that ensures compression of matter to den- 
sities of the order of 103-104 times the initial solid density. The optimum choice of laser 
pulse shape and target parameters on the basis of numerical calculations presents great 
difficulties. The key idea in the calculations is usually the requirement of adiabatic 
compression of the dense core of the target. Dimensional analysis then permits establishing 
the asymptotic law for the increase with time of the mechanical power expended on compression 
[3]: E m ~ It1-2 (here and below, we consider spherical compression of matter with an adi- 
abatic index u = 5/3; time is measured from the instant of collapse). A particular self- 
similar solution, satisfying this law, is indicated in [4, 5]. In this case, the follow- 
ing questions remain unclear: i) Does the self-similar correspond to the only optimum com- 
pression regime and are flows close to self-similar flows realized with the numerical simu- 
lation? 2) How is the laser pulse shape related to the time dependence of the mechanical 
power? In the present work, it is shown that the solution in [4, 5] is not the only solution 
in the sense indicated and two new families of self-similar solutions are constructed to the 
equations of gasdynamics, describing the compression of simple shell-like and continuous uni- 
form laser targets. The solutions constructed are singular; the corresponding values of the 
self-similar indicators lie within some interval of acceptable values. In order to con- 
struct the solutions, it is necessary to transform to a scale-invariant representation of 
the hydrodynamic variables. The reverse procedure for calculating the physical quantities 
requires the characteristic parameters of the medium: the specific entropy in the case of 
shells and the initial plasma density in the case of continuous targets. The solutions 
constructed describe the process of an unbounded concentration of energy as the instant of 
collapse is approached; in an actual experiment, the magnitude of the total energy, of 
course, is limited and determines the maximum degree of compression. It is shown by way of 
comparison with numerical calculations that for a correct choice of parameters the self- 
similar solutions found give a quantitative description of the dynamics of the compression 
of the dense core of a target in regimes that are similar to those studied numerically [i, 
2]. It has been found that for shells with degrees of compression of practical interest, 
the law that describes the change in power can differ noticeably from the asymptotic law. 
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We note that the solutions examined are useful for describing nonisentropic compression 
regimes, for which a converging shock wave (SW) appears as the initial pe+turbation. This is 
significant, since in experiments it is not possible to avoid the formation of an initial SW 
and the corresponding heating of the center of the target. 

Analysis of numerical calculations [6] shows that in the case of thin shells the laser 
and mechanical power have a greatly differing time dependence. This difference is almost 
entirely related to the ablation of material, which leads to a decrease in the mass of the 
dense core. 

As is well known, there are two regions with sharply differing properties in laser 
targets: the hot corona, in which light is absorbed and in which the reactive pulse is formed, 
and the dense core, which is compressed under the action of the reactive pulse. In the core, 
the heat flux is negligibly small, while the electronic and ionic temperatures are equal. 
For this reason, the compression of the core can be described by the system of gasdynamic 
equations. The latter have a class of particular solutions that depend on the variable ~ = 
ar/(--t) ~. The singular solutions that describe the cumulation of the entire mass of sub- 
stance in the center of symmetry at some moment in time t = 0 are of interest for the problem 
~of superdense compression. 

Let us first examine the collapse of a shell. After a laser pulse with initial power 
Eo is turned on, an SW, which transmits to tile substance a specific entropy AS = cvln~, ~ = 
0.02p~/3E~/3pTZR74/3 (Po is the initial density), arises in the shell. For thin shells, the 
entropy is uniformly distributed throughout the mass. Further compression occurs with 
constant entropy, and the finite degree of compression depends on the magnitude of the 
entropy. The system of equations of gasdynamics reduces in the usual way [7] to a single 
ordinary differential equation, in which the variables are the dimensionless flow speed and 
the speed of sound, which are related to the corresponding dimensional quantities by the 
relations v(r, t) = (r6/t)~(~) and c(r, t) = --(r~/t)4(~). The singular solution sought 
corresponds to an integral curve in the plane (~, 4), connecting the singular point Q(I, 0), 
which corresponds to the boundary with the vacuum, and the singular point R(I/26, i/2~). 
Indeed, for the simplest singular solution v = r/2t, and c = --r/2f3t, the power law is given 
by Em = 4~R~PnVn ~ ItJ -2 (the subscript n denotes parameters of some fixed Lagrangian parti- 
cle belonging to the dense core). For singular regimes with the asympmtotic law E m ~ ItJ -2 
for t + 0, it is necessary that ~(~n(t)) + 1/26 and 4(~n(t)) + i/2/36. Such integral curves 
exist under the condition that the index of self-similarity 6 satisfies the inequalities 
i/2~ 6~ (~+ i)/2/3 = 0.7887. For 6 = 0.5, the solution sought is given by the straight 
segment ~ = 1 and the temperature distribution follows from the formula 42 = (g2 _ i)/3~2 
while the velocity distribution is linear with respect to the radius. This particular so- 
lution is studied in [4]. For ~ < 0.5, the integral curve lies entirely in the region ~ > i. 
In this case, the required asymptotic behavior is not satisfied for t § 0. For 6 > 0.7887, 
the integral curve intersects the straight line corresponding to the doubling of the so- 
lutions S, the equation of which is ~=i -- ~ (for a more detailed discussion of the straight 

line S see [7]). Indeed, the curve leaves the saddle point Q along the separatrix~ = i-- 

9 26--I~2 ~ O(~3) but in this case (2~) -~ < 1 (2~) -~. Finally, if ~ < 0.7887, we 51--~ , 

have (2~+) -I > 1 -- (2+) -t. Here, the point R is a node. It can be shown that among the 
bundle of curves emanating from R, there i s always one that hits Q. 

Numerical integration is necessary in order to find the integral curve sought. However, 
there exists a sufficiently accurate approximate solution, which gives the following density 

profile: 

[0,25 --~-~t) 316(i-6) 1n 3,'2 
P(r,t)~]O.Olt ( - - ~  , ~>2, 

~<1.4, 

where ~ = r/ro(t); ro(t) is the internal radius of the shell. The accuracy of the formulas 
is not lower than 10%. Figure 1 shows the trajectory of a Lagrangian particle with 0.18 Mo 
and the change in the density in the particle as a function of time; and, the self-similar 
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solution sought (curves 2, 3, ~ = 0.77 and 0.53, respectively) is compared with the numerical 
calculation (curve i) of the compression of a shell, carried out for a simultaneous two- 
temperature hydrodynamic model taking into account absorption of light and transport processes 
with restrictions as to the flux [6] (the targetconsists of a DT mixture, Mo = 0.2 ~g, the 
thickness equals i0 ~m, Eo = 3"109 W). The calculation was performed for a laser pulse with 
shape given by ~l(t) -- Eo(to/[tl) m with the parameters to = 1.2 nsec, m = 1.3, and energy 
equal to 200 J. It can be seen that the motion of the dense part of the target is well de- 
scribed by the self-similar solution. 

We note that for degrees of compression of practical interest ~i03-I04, the motion of 
the shell still differs significantly from the asymptotic motion, corresponding to infinite 
compression, while the power expended on compression does not have a power-law dependence as 
a function of time. If the power is approximated as usual with a power-law approximation, 
then the exponent is always less than the as~ptotic value. The magnitude of the exponent 
depends, of course, on the parameters of the shell and the degree of compression, so that 
the approximate expression presented above for the laser power is not a universal expression. 

Let us now examine the singular regime for the compression of solid targets. The 
assumption of self-similar motion again allows reducing the problem to integration of a 
single ordinary differential equation [7, 8]. The integral curve sought connects the singular 

point M(3/4, ~/4) corresponding to a strong shockwave, to the singular point (I/2~, 
# 

' _ 3 4 ~ I /  

26). ~proaching the latter point corresponds to reading the as~ptotic region Em ~ Jt1-2 
The physically correct solution exists for all values of d satisfying the inequalities 1/24 

< A(y). The upper edge of the spectrum is determined from the condition that the points M 
and N lie on the same side of the doubling line S; in this case N is a node. We note that 
A(~)~ ~g(y), where ~g(y) is an index that corresponds to the converging Landau~uderleya 
shock wave [8, 9], A(5/3) = ~g(5/3) = 0.688. For ~ < 1/2, the point N moves out of the 
physical region p > 0, ~ > O. We note also (this remark also relates to the case of a shell- 
like target) that the edges of the continuous spectrum B found above in principle can also 
include discrete values of t~ index ~, which give correct solutions to the problem and which 
correspond to integral curves that intersect S at the singular point. This question requires 
special analysis. 

The solution is constructed as follows. Let a SW converge at the center of a target so 

that behind the SW front the temperature is given by T~0.~\-~0 ) \-~0} ' where Mi is 

the ionic mass, k is the Boltzmann constant, Ro is the initial radius of the target, and to 
is the duration of the pulse. The spatial profiles of the density and temperature in the 
solid target are sho~ in Fig. 2 (i- 6 = 0.527, 2- d = 0.667). In the shock wave regime, 
the temperature in the perturbed region depends weakly on the coordinates. Figure 3 shows 
a comparison of the average temperature of the compressed matter, computed numerically (curve 
1), with the temperature behind the front of the self-similar shock wave for d = 0.527 and 
0.667 (curves 2 and 3, respectively). The results correspond to a solid target, Mo = 0.2 ~g, 
Ro = 66 ~m, to = 0.87 nsec, m = 2, and E = 200 J. The results show good agreement. 
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Thus, the described self-similar solutions give the correct quantitative description of 
compression and heating of the dense regions of laser targets and can be used for optimizing 
laser plasma compression regimes and estimating the conditions for igniting thermonuclear 
laser-driven reactions. 

The authors are grateful to M. F. Ivanov for his help with the numerical calculations. 
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